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Abstract. In this paper, we present a new class of pseudo-global optimization procedures for solving
formidable optimization problems in which the objective and/or constraints might be analytically
complex and expensive to evaluate, or available only as black-box functions. The proposed approach
employs a sequence of polynomial programming approximations that are constructed using the Re-
sponse Surface Methodology (RSM), and embeds these within a branch-and-bound framework in
concert with a suitable global optimization technique. The lower bounds constructed in this process
might only be heuristic in nature, and hence, this is called a pseudo-global optimization approach.
We develop two such procedures, each employing two alternative branching techniques, and apply
these methods to the problem of designing containerships. The model involves five design variables
given by the design draft, the depth at side, the speed, the overall length, and the maximum beam.
The constraints imposed enforce the balance between the weight and the displacement, a required
acceptable length to depth ratio, a restriction on the metacentric height to ensure that the design
satisfies the Coast Guard wind heel criterion, a minimum freeboard level as governed by the code of
federal regulations (46 CFR 42), and a lower bound on the rolling period to ensure sea-worthiness.
The objective function seeks to minimize the required freight rate that is induced by the design in
order to recover capital and operating costs, expressed in dollars per metric ton per nautical mile. The
model formulation also accommodates various practical issues in improving the representation of the
foregoing considerations, and turns out to be highly nonlinear and nonconvex. A practical test case
is solved using the proposed methodology, and the results obtained are compared with those derived
using a contemporary commercialized design optimization tool. The prescribed solution yields an
improved design that translates to an estimated increase in profits of about $18.45 million, and an
estimated 27% increase in the return on investment, over the life of the ship.

Key words: Pseudo-Global Optimization, Response surface methodology, Containership design,
Branch-and-reduce optimization navigator (BARON), Reformulation-linearization technique (RLT)

1. Introduction

Several engineering and process design problems lead to formidable optimization
models that contain analytically complex objective and/or constraints that are ex-
pensive to evaluate, or that might be available only as black-box functions. Such
problems are also typically highly nonlinear and nonconvex in nature. Because of
these challenging features, problems of this type are not amenable to traditional
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local or global optimization techniques. The new class of pseudo-global optim-
ization procedures we develop in this paper are geared toward addressing such
problems.

One approach that has frequently been employed to solve these types of com-
plex optimization problems is Response Surface Methodology (RSM). In its tradi-
tional form (see Myers (1995), for example), this technique attempts to optim-
ize some black-box or expensive-to-evaluate objective function subject to box-
constraints (where other constraints might be incorporated into the objective func-
tion via suitable penalty terms). The methodology employs quadratic approxima-
tions to the objective function in order to ascertain whether a current solution is a
local optimum, or else, to detect a search direction. A suitable step length along this
direction leads to a new solution, and the procedure is reiterated. However, this pro-
cess is intrinsically memoryless. Joshi et al. (1998) describe an enhanced conjugate
gradient type of scheme within the context of an RSM-simulation-optimization
framework that utilizes previously generated information to compose more ef-
fective search directions. Neddermeijer et al. (2000) discuss in detail an RSM
framework for optimizing functions that are evaluated via a stochastic simulation
model.

Jones et al. (1998) develop a novel RSM-based approach, called the Efficient
Global Optimization (EGO) method, to optimize black-box functions that are ex-
pensive to evaluate. A model function is fit to a set of current points at each
stage using maximum likelihood parameter estimators in concert with a nonlinear
stochastic process model predictor called DACE (Design and Analysis of Com-
puter Experiments). This model (or a revised form of it based on certain diagnostic
goodness-of-fit tests) is used to define a suitable expected improvement utility func-
tion that is maximized to determine a new point at which the function is evaluated.
The process then reiterates until the expected improvement is less than 1% of the
current best objective value.

Another specialized RSM type approach for optimizing complex functions (or
penalty functions) over a hyperrectangle is the Radial Basis Function (RBF) method
due to Gutmann (2001). Here, given a set of points at any stage, a radial basis
interpolating function is defined as a weighted sum of a cubic or a thin plate spline
function of the Euclidean distances from the given points, plus an affine term. This
interpolating function is locally minimized and the result is used to compute a
target value based on which an auxiliary function is defined. The minimization of
the latter function is simpler than that of the original function, and the resulting
solution from executing this step is used to define a new point. This process is
continued until either an original objective value close to some goal is attained
or some maximum number of iterations have been performed. Gutmann suggests
different forms for the radial basis and the auxiliary functions. Some alternative
choices of auxiliary functions that tend to be numerically more stable, as well
as improved factorizations for implementing this method, are presented in Bjork-
man and Holmstrom (2001). Several test cases of industrial and finance problems,
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including one of designing certain features of a passenger train to minimize the
total vehicle mass subject to constraints on ride quality measures, are solved to
demonstrate the efficacy of the proposed approach.

It might be worth commenting here that as discussed by Alexandrov et al.
(1998), trust region methods for unconstrained local minimization can be adapted
to enhance RSM-type strategies. In trust region procedures, at any iteration, based
on current (and previous) function and gradient evaluations, an updated second-
order Taylor series model is constructed and is optimized over a trust region.
Depending on the ratio of the actual to the predicted improvement in objective
value, the new solution is either accepted or rejected, and the trust region is either
expanded or contracted (or left unaffected). This process continues until a first-
order local optimality condition is satisfied. Within this framework, depending on
the application, a response surface, or a simulation model, or any other approx-
imation model can be used in lieu of the second-order Taylor series model. A
resulting method of this type, as pointed out by Alexandrov et al. (1998), might be
more meaningful and have proven local convergence properties related to the ori-
ginal function, in contrast with simpler approximation model solution algorithms
adopted frequently in structural optimization contexts, as reviewed for example
in Barthelemy and Haftka (1993). Powell (2002) also describes a technique for
unconstrained minimization through the use of quadratic models that are fit on an
iteratively updated set of interpolation points, along with trust region techniques.
To achieve convergence, error bounds on the quadratic model as previously pre-
scribed by Powell (2001) are used, based on the assumption that the objective
function has third derivatives bounded by a specified constant.

Jones et al. (1993) propose a variation of a Lipschitzian optimization method
called DIRECT that is based on evaluating the objective function value at the cen-
ters of a sequence of hypercubes. (Constraints other than the hypercube restrictions
are accommodated within the objective function via a linear (Lagrangian) penalty
term.) An intrinsically estimated Lipschitz constant is used to guide the selection of
the most promising hypercube to explore. Cox et al. (2001) evaluate this procedure
in comparison with other traditional search methods in the context of designing
high speed civil transport aircraft, and report its relative superiority in solving test
cases that exhibit widely separated local minima. Knill et al. (1999) also describe
an RSM approach for solving such supersonic aircraft design problems.

Booker et al. (1999) present a surrogate management framework for construct-
ing a sequence of approximations for minimizing expensive to evaluate objective
functions over simple box constraints. The focus is on constructing surrogates
via interpolation approximations using kriging, and optimizing these by applying
pattern search algorithms that are proven to converge to stationary points for dif-
ferentiable functions. An extension of this methodology to handle more general
constraints is posed as a future research direction.

Jones (2001) presents an excellent discussion and taxonomy of global optimiz-
ation methods based on response surfaces. The taxonomy mainly partitions RSM
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approaches into two-stage procedures wherein a surface is fit first and then a next
iterate is found by optimizing an auxiliary function defined by this surface, and one-
stage methods that directly use the machinery of RSM to evaluate hypotheses re-
garding the location of an optimum. Five two-stage methods are discussed based on
using quadratic response surfaces, or employing interpolating surfaces via splines
or kriging, or conducting a global search based on statistical lower bounding func-
tions, or iterating by either maximizing the probability of detecting a function value
that is better than a specified target, or by maximizing the expected improvement
upon sampling at the next point. The two one-stage methods discussed use RSM to
evaluate the hypothesis regarding the location of where it would be most credible to
detect a new iterate that would achieve either a prescribed targeted objective value,
or several such values at each iteration. While all these methods are developed for
unconstrained (or box-constrained) problems, Schonlan et al. (1997) have extended
the two-stage RSM approaches based on maximizing the expected improvement
to handle constraints as well. Notwithstanding such contributions, Jones (2001)
suggests the extension of RSM-based methods to constrained problems as an open
and important challenge for research.

The pseudo-global optimization approach proposed in the present paper is one
such technique for solving formidable constrained optimization problems. This is
a two-stage RSM approach where first, over a current bounding hyperrectangle in
a branch-and-bound framework, a forward stepwise regression process is applied
to a feasibility screened, full or fractional factorial experimental design to develop
(up to) fifth-order polynomial approximations for the objective and constraint func-
tions. Note that a simple minimization of this polynomial approximating problem
can easily miss the global optimum (as illustrated by Jones (2001) for the uncon-
strained quadratic response surface minimization case). Instead, two alternative ap-
proaches are adopted at the subsequent stage. In the first approach, the nonconvex
polynomial programming approximating problem is solved to global optimality.
(The software package BARON (Branch-and-Reduce Optimization Navigator —
see Sahinidis, 1996), or the Reformulation-Linearization Technique (RLT) pro-
cedure of Sherali and Tuncbilek (1992, 1997), can be used for this purpose.) The
resulting solution is refined by the application of a local search method. The mo-
tivation is that the polynomial approximating problem is likely to yield solutions
in the vicinity of the true underlying global optimum, and hence, the application
of a local search method initiated at such a solution has a greater prospect of
detecting such a global optimum. Treating the polynomial approximation solution
as a pseudo lower bound, this foregoing analysis is embedded as the node strategy
in a branch-and-bound algorithm, using two suitable branching schemes that are
designed to induce convergence. As such, because of the assumption on the valid-
ity of the heuristic lower bound, we refer to this methodology as a pseudo-global
optimization technique.

For the second proposed pseudo-global optimization scheme, in lieu of solving
the nonconvex polynomial programming approximation to global optimality, we
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generate a higher dimensional linear programming (LP) relaxation for this poly-
nomial program via a suitable RLT procedure. This LP relaxation value is then
taken as a (pseudo) lower bound, and is incorporated within a branch-and-bound
framework as for the first method.

As an illustration, we apply this class of methods to a practical test case con-
cerned with the design of containerships. A contemporary ship design tool has been
developed by Neu et al. (2000), wherein various aspects of the problem formulation
are constructed as modules that are linked together and are used to generate the ob-
jective and constraint functions. These modules relate to the geometry, hydrostat-
ics, resistance, propulsion, lightship weight, cargo, total weight, and the economics
of the problem. This framework is further linked with a nonlinear optimization
tool (Design Optimization Tools (DOT) developed by Vanderplaats Research and
Development, Inc.), that incorporates various local search algorithms such as the
modified method of feasible directions, sequential linear programming, and se-
quential quadratic programming (see Bazaraa et al. (1993) for a description of
these algorithms). We employ this design tool to generate our model, incorporating
certain additional modeling improvements as discussed in Section 3 below. We
also compare the results obtained by using Neu et al.’s optimization tool to solve
the derived problem, versus employing our proposed methodology. In our com-
putational experimentation using a typical practical test case, both our proposed
methods found the same solution using two alternative partitioning schemes, where
this solution significantly improved upon that prescribed by the commercial design
optimization tool employed by Neu et al. (2000).

The remainder of this paper is organized as follows. In Section 2, we present the
structure of our proposed class of pseudo-global optimization methods. In Section
3, we provide a conceptual overview of the containership design model formula-
tion, including a discussion on the related literature and the modeling aspects for
which we have developed an improved representation. Computational results on
applying the proposed pseudo-global optimization methods to solve the container-
ship design problem and comparisons with the incumbent approach of Neu et al.
(2000) are given in Section 4. Finally, Section 5 summarizes our contributions, and
recommends avenues for further research, as well as extensions to other problems
such as the design of warships.

2. Pseudo-Global Optimization Algorithms (PGO1 and PGO2)

Consider an optimization problem stated in the following form.

Minimize f (x) (1a)

subject to x ∈ X (1b)

x ∈ �0 ≡ {
x : �0

j � xj � u0
j , ∀j = 1, . . . , n

}
(1c)
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where x ∈ Rn represents the set of decision variables, and where X ⊆ Rn is
defined in terms of certain inequality and/or equality constraints. The objective
(1a) and these constraint functions might be black-box functions, or some complex
analytically defined functions that are expensive to evaluate. We also assume that
the indices j = 1, . . . , n of the variables represent a user-defined ranking that
reflects a nonincreasing order of priority among these decision variables. (This
priority indexing will play a role in the branching decisions, and we will illustrate
using our application in the next section how such a ranking might be inferred in
the absence of any related prior information.)

We now propose two pseudo-global optimization approaches (denoted as PGO1
and PGO2) to solve problems of this type. These approaches are based on iterat-
ively using the Response Surface Methodology (RSM), or curve-fitting procedures,
in concert with certain global optimization schemes for effectively solving poly-
nomial programming problems (see Sahinidis (1996), and Sherali and Tuncbilek
(1992, 1997)), in order to design an overall algorithmic procedure. At each step of
this process, given a current hyperrectangle bounding the design variable space, we
first construct fifth-order polynomial approximations to the (nonpolynomial) ob-
jective and constraint functions. Note that in general, for a function of n variables,
a polynomial approximation of order d will have(

n + d

d

)

terms, including a constant value. This can be done by using a full or fractional
factorial design over the current hypercube, and performing a regression analysis
to obtain the coefficients of the fitted polynomial response function (see Myers,
1995). Alternatively, some interpolating technique as advocated by Jones (2001)
can be employed to develop these objective and constraint response surfaces.

Accordingly, at some node k in the associated branch-and-bound framework,
let

�k ≡ {
x : �k

j � xj � uk
j , ∀j = 1, . . . , n

}
denote the corresponding hyperrectangle that defines the current bound restrictions
on the decision variables. Hence, the feasible region for the node k subproblem is
given by X

⋂
�k. Let the polynomial programming problem generated by repla-

cing the objective and constraint functions with their polynomial response surface
approximations over �k be denoted by PPk.

In the first pseudo-global optimization approach, abbreviated PGO1, we solve
the foregoing nonconvex polynomial program PPk to global optimality to yield a
solution xk of objective value zk. (For this purpose, we can employ the software
package BARON (Branch-and-Reduce Optimization Navigator — see Sahinidis,
1996), or adopt the RLT-based procedure of Sherali and Tuncbilek (1992, 1997).)
The value zk is assumed to represent a lower bound on the node subproblem,
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although this might not be necessarily true in theory. (For this reason, the over-
all procedure is called a pseudo-global optimization method.) Using the resulting
solution xk as a starting solution, we next apply a nonlinear programming search
method to the original problem (1) in order to identify a local minimum. The
motivation for this is that if the polynomial approximating problem is a suffi-
ciently reliable representation of the true underlying problem over the subregion
of concern, the solution xk is likely to be a near-global optimum to the original
problem over this region. Hence, refining xk to a local optimum is likely to yield a
good quality solution. The resulting solution, xk∗, is used to update the incumbent
solution x∗ of objective value z∗, if necessary. If zk � z∗(1−ε), for some optimality
tolerance 0 � ε � 1 (we used ε = 0.01 in our computations), we fathom this node
k. Otherwise, we partition the node k into two subnodes based on splitting the
current interval

[
�k

q, u
k
q

]
of a selected variable xq at a suitable value xk

q as follows.
We first define

xk ≡
{

x∗ if x∗
j ∈

[
�k

j , u
k
j

]
∀j, with x∗

j ∈
(
�k

j , u
k
j

)
for some j

xk otherwise.
(2)

Next, we find the lowest indexed (highest priority) variable xq for which �k
q <

xk
q < uk

q . Note that such an xq must necessarily exist by definition in (2) in case
xk ≡ x∗. Furthermore, if xk ≡ xk, then such an xq is likely to exist because at
the feasible vertices of the hyperrectangle �k that are included within our response
surface designs, the polynomial approximations tend to be exact, whence node k

would likely be fathomed in case xk is a vertex of �k. However, whenever such an
xq does not exist, and if there exists an index j for which

�k
j < x∗

j < uk
j (3a)

we let q be the smallest such index. Else, failing this, we select

q ∈ arg max
j=1,... ,n

{(
uk

j − �k
j

)
/
(
u0

j − �0
j

)}
. (3b)

For either of the latter two cases in (3), we re-define

xk
q ≡

{
0.1�k

q + 0.9uk
q if xk

q = uk
q

0.9�k
q + 0.1uk

q if xk
q = �k

q.
(4)

Accordingly, we now create two subnodes for node k by replacing the correspond-
ing bounding restrictions �k

q � xq � uk
q for the variable xq by

�k
q � xq � xk

q , and xk
q � xq � uk

q (5)

in the two respective successor subproblems. Furthermore, to induce convergence
using standard arguments (see Horst and Tuy, 1993), we periodically select q via
(3b) along any branch (say, every 10 partitions or so), and bisect the current interval
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of xq to obtain the two subnodes. Each of the resulting two subproblems in any case
is then analyzed similar to the parent node k. The motivation for this node parti-
tioning or branching rule, abbreviated BR1, is that the approximations tend to be
exact at the points defined by interval end-points of the variables. Hence, for a node
subproblem, if the incumbent solution lies in the corresponding hyperrectangle, we
attempt to generate subnodes whose end-points would match with the incumbent
solution values, at least with respect to the higher priority variables. The motivation
for (4) is to perturb the current relaxation solution away from the vertex of �k

with respect to a critical index so as to encourage either detecting an improved
incumbent, or fathoming this solution. Otherwise, the (pseudo) lower bounding
mechanism is tightened by creating end-points at the corresponding approximating
problem’s solution with respect to the higher priority variables (via the second case
in (2)).

In this overall process, we also maintain a list of active nodes L for which the
(pseudo) lower bound is less than z∗(1 − ε). At any stage, we extract (i.e., select
and remove) a node k from L that has the least lower bound. If L = Ø, or if we
have encountered a total of some Nmax nodes, we terminate the overall process,
and prescribe the current incumbent solution for implementation. (We recommend
Nmax � 2n′

, if reasonable, where n′ is the number of variables for which the
incumbent solution value at the root-node is different from the variable bounds,
so that this might at least provide the opportunity to explore the 2n′

subproblems
based on a combination of subintervals, each split at the corresponding variables’
non-end-point interval values.)

The second node partitioning or branching rule that we propose, abbreviated
BR2, adopts the following procedure. We first define

xk ≡




x∗ if x∗
j ∈

[
�k

j , u
k
j

]
∀j, with x∗

j ∈
(
�k

j , u
k
j

)
for some j

xk otherwise, if xk
j ∈

(
�k

j , u
k
j

)
for some j

x̂k otherwise, where x̂k
j = 0.75uk

j + 0.25�k
j ∀j,

and let
bk

j ≡ number of times that xj has been selected as the branching variable in the
path from the root-node to the node k in the enumeration tree thus far, ∀j .

The branching variable index q is then selected as

q ∈ arg lex min
{(

bk
j , j

) : �k
j < xk

j < uk
j , j = 1, . . . , n

}
, (6)

and accordingly, we branch as before via the dichotomous restrictions (5). Again,
as in BR1, we periodically select q according to (3b) along any branch, and bisect
the current interval of xq to obtain the two subnodes. The motivation for the modi-
fication implemented in BR2 as embodied by (6) is that it avoids selecting the same
branching variable if another viable choice exists that has not been considered (or
has not been considered as many times) thus far along the chain from the root-node
to node k.
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The second proposed pseudo-global optimization procedure, PGO2, follows the
same overall scheme as for PGO1, with one key difference. For any node k � 0,
having formulated the polynomial programming approximation PPk, in lieu of
solving this polynomial program to optimality as in PGO1, we instead construct an
RLT-based tight linear programming (LP) relaxation RLT-PPk, say, for the problem
PPk (see Sherali and Tuncbilek, 1992, 1997), and solve this LP relaxation to derive
the solution xk of objective value zk. The remainder of this procedure follows the
schema of PGO1 identically. Note again that as shown in Sherali and Tuncbilek
(1992), the RLT relaxation value matches that of the original polynomial program
at the vertices of �k, and therefore, the motivation for the branching index selection
rules BR1 and BR2 remains the same. The key difference is that the (pseudo) lower
bound is now being computed via the solution of a linear program RLT-PPk, as
opposed to a polynomial program PPk. The motivation here is that if RLT-PPk is a
tight relaxation of PPk, (which the results in Sherali and Tuncbilek (1997) anticip-
ate to be the case), then we might save on computational effort without impairing
the quality of the solution derived at termination of the proposed algorithm.

As far as the finite convergence of these pseudo-global optimization proced-
ures PGO1 and PGO2 for any given tolerance ε > 0 is concerned (even with
Nmax = ∞), this follows from the periodic interval bisection in the prescribed
branching schemes and the standard convergence arguments expounded in Horst
and Tuy (1993) and Sherali and Tuncbilek (1992). However, except under certain
additional conditions regarding the structure of the problem and the algorithmic
process employed, we cannot guarantee that this convergence will occur to a true
(ε-) optimal solution. For example, such a guarantee is assured by the develop-
ment in Sherali and Wang (2001) if the objective and constraints are factorable
functions, and if the polynomial approximations employed are interpolating poly-
nomials, such as Chebyshev polynomials, that can be shifted by some known error
bounds. In such cases, the polynomial programs PPk are true lower bounding re-
laxations, and the branching mechanism employed will induce convergence to a
global optimum (see Sherali and Wang, 2001). In a similar spirit, Cox and John
(1997) discuss how “statistical lower bounds” can be computed in the context of
unconstrained optimization by exploiting the standard error measure that is avail-
able when using kriging interpolation techniques. Assuming these errors to reflect
true discrepancies between the actual function and the fitted response, a convergent
global optimization algorithm could be designed. We recommend the exploration
of such methods that would guarantee convergence to a global optimum for various
classes of problems of type (1) for future research.

3. Application to a Containership Design Problem

Ship design has traditionally been an iterative process in which different aspects
of the problem pertaining to power, strength, stability, weight, and space balance



344 H.D. SHERALI AND V. GANESAN

have been performed in sequence to arrive at a variety of feasible solutions. This
iterative process of working from mission requirements to a detailed design can
be conceived as moving along a Design Spiral (see Taggart (1980)), in which the
steps progress from a basic initial design to a final prescribed contract plan via a
series of parametric studies that attempt to determine the most economical design.
Although the design spiral approach has been refined considerably with the advent
of various computer programs, it lacks formalism from a modeling and optimiz-
ation perspective. This has prompted several researchers to develop optimization
approaches that would facilitate an effective synthesis of all the required design
specifications, and would provide a useful mechanism for exploring competitive
designs.

Chryssosstomidis (1967) proposes an optimization approach to containership
design in which the carrying capacity (number of containers) and the speed are
fixed during the design process. The measure of merit used attempts to minimize
the annualized total cost. A random search optimization technique is employed,
that computes values of the objective function for thousands of sample designs
satisfying a given set of owner’s requirements, each corresponding to a set of
values of the independent variables as determined by an exponential random search
transformation. Erichsen (1971) presents a mathematical model for containership
design optimization that considers operating costs incurred at container port ter-
minals as well as for land transportation, in addition to the annualized ship cost.
Here again, the carrying capacity (number of containers) and the speed are fixed
during the design process, and results are obtained and compared by using a direct
search technique and by employing geometric programming techniques. The latter
methodology is shown to produce competitive designs. Keane et al. (1991) describe
an integrated computational approach to ship concept design that incorporates
accepted naval architectural tools, a sophisticated database handler, and several
optimization procedures. The objective used is to minimize resistance, which is
calculated by the Holtrop–Mennen regression method (see Holtrop and Mennen
(1984)). Sen (1992) advocates Multiple Criteria Decision Making (MCDM) as a
more effective approach to marine design, and accordingly, proposes a goal pro-
gramming model. Ray and Sha (1994) argue that in this model, the identification
of the weights associated with the different goals is difficult since the goals are
all interrelated. They propose an objective function given by a weighted average
of the building cost, power, and steel weight of the ship, and apply local search
techniques to solve the problem, while again treating the number of containers and
the speed as fixed parameters in the design process. In a follow-on study, Ray et
al. (1995) explore a combination of simulated annealing and multistart nonlinear
search methods. A variety of local solutions differing significantly in objective
value are derived, thereby exhibiting the nonconvexity of the design problem.

In most of these methods, the hull form geometry of the ship is assumed to
be fixed to a scale-factor, or is taken as some convex combination of standard
hull forms. Peri et al. (2001) describe a discretized shape optimization approach
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Figure 1. Principal dimensions of the ship

for designing the hull of tanker ships in order to minimize a combination of the
resistance of the ship and the amplitude of the wave patterns produced at a spe-
cified design speed. Steepest descent, conjugate gradient, and sequential quadratic
programming local search methods are tested for solving the generated model. Two
new optimal hull geometries, in addition to the conventional bulbous bow design,
are identified.

Valorani et al. (2000) investigate more effective strategies for the design of
optimal ship hulls, employing sensitivity analysis and adjoint equations based pro-
cedures. Shape optimization of the bulbous bow of a hull is used as a test case to
compare results obtained by using these enhanced strategies to those obtained via
algorithms based on finite differences for gradient computation, demonstrating an
estimated 33% CPU time savings for identifying the same optimal design for all
three methods. For additional discussion on designing optimal ship hulls, we refer
the reader to Tahara et al. (2000).

We now describe a model formulation for the containership design problem that
we use as a case study to illustrate the application of our proposed pseudo-global
optimization procedures. As mentioned in Section 1, the containership design pack-
age developed by Neu et al. (2000) encapsulates the essential aspects of the prob-
lem formulation via a set of modules that relate to the geometry, hydrostatics,
resistance, propulsion, lightship weight, cargo, total weight, and economics of the
problem. These modules perform various computations related to the structural and
physical properties, performance characteristics, and economic aspects of the ship,
given a set of parameters and design decision variable values. Rather than repro-
duce the different formulae in terms of the design decision variables that govern
these calculations, we shall focus in this section on the basic underlying concepts
and the essential naval architectural terms and definitions that are central in con-
structing the model formulation, including comments on the model enhancements
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that have been incorporated within the present study. A full detailed statement of
the resulting objective and constraint functions (some of which run into hundreds
of terms) can be obtained from the appendices of Ganesan (2001) as indicated
below. When referring to these appendices, the reader is cautioned to match the
variables defined therein with those designated below, where the latter have been
reindexed in order of importance as prescribed by our solution methodology.

The design decision variables for the problem, prioritized according to their
relative importance in the model, are as follows (see Figure 1 for an illustration of
the related physical dimensional variables).

1. Design Draft (in meters), x1: Draft is defined as the depth of the ship below
the waterline, measured vertically to the lowest part of the hull, propellers, or
some other reference point. Design Draft is defined as the draft under a full-
load condition, and is more convenient to use since it frequently occurs in the
computations performed within the design process.

2. Depth at side (in meters), x2: Depth at side is defined as the molded dis-
tance between the ship’s baseline and the underside of the deck plating for the
uppermost continuous deck, measured at the side of the ship.

3. Speed (in knots), x3: The service speed is defined as the predicted average
speed at which the ship (at design draft immersion) is expected to operate
over its entire life at sea. This prediction takes into account such factors as
the environment, fouling, corrosion, and any other aspects that tend to reduce
a ship’s speed. (Knot is a unit of speed, equaling one nautical mile per hour;
the international nautical mile is 1852 m.)

4. Overall Length (in meters), x4: The overall length is defined as the extreme
length of a ship measured from the foremost point of the stem to the aftermost
(lattermost) part of the stern.

5. Maximum Beam (in meters), x5: The maximum beam is defined as the max-
imum molded width of the ship measured to the outside of the hull frame angle
of channel, but inside of the shell plating.

In addition to the foregoing dimensional design variables, another fundamental
characteristic that determines the overall shape of the ship is the hull form. Of
particular interest are the geometric properties of the form of the hull that would
typically be immersed in the water under normal operating conditions. These char-
acteristics are also referred to as hydrostatic properties because they pertain to
the underwater form of the hull. The hull geometry is typically ascertained by
traditional naval architectural integration procedures. In the containership design
package developed by Neu et al. (2000), this hull geometry is captured via a user-
selected weighted average of two or three basis hull forms, where the latter are
described in terms of certain net point vectors that depend on the overall dimen-
sions of the ship. While it is possible to include such weights attached to certain
basis hull forms as decision variables within the model, users alternatively select
such weights to determine the geometrical shape of the hull, but let the overall
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dimensions of the ship dictate its actual ultimate size and form. We have adopted
the latter approach in the present study.

There are five structural constraints that are imposed on the design problem, in
addition to suitable lower and upper bounding restrictions on the decision variables.
These constraints are described in turn below.

3.1. BALANCE BETWEEN THE WEIGHT AND THE DISPLACEMENT

According to Archimedes’ floatation principle, we must necessarily equate the dis-
placement (i.e., the weight of the displaced water assuming a certain sea-water
density) with the weight of the ship. The normal design practice is to enforce
this mandatory restriction under full-load conditions. Hence, the displacement is
directly related to the draft design variable (x1) and the hull shape (see Figure 1).
Note that by specifically including the draft as a decision variable in our model and
explicitly enforcing this constraint, we avoid the implicit internal loop employed
in previous design approaches where the draft is iteratively computed based on the
other design and weight characteristics using Archimedes’ Principle, and is then
required to lie within suitable bounds. Our modified approach makes the model
more precise and simplifies the optimization process. In this context, the displace-
ment term is computed via numerical integration using the hydrostatic curves (see
Neu et al. (2000)).

As far as the weight term within this equality constraint is concerned, this value
is computed under full-load conditions based on the essential dimensions and hull
form of the ship, and its carrying capacity. The weight and cargo modules of Neu et
al. (2000) are used for this purpose, where the former computes the lightship, fuel,
and other miscellaneous weights, while the latter examines the carrying capacity
of the ship in terms of twenty-foot equivalent units (TEUs) of cargo containers
that can be accommodated, times the estimated weight per container unit. The
lightship weight is comprised of the hull steel weight, the outfit and the hull engin-
eering weight, and the machinery weight. The fuel weight depends on the engine
horsepower and efficiency characteristics, the desired range of the ship as defined
by the user, and the design speed (x3). Other miscellaneous weights include those
pertaining to the crew and their provisions, freshwater, and the lube-oil for the
diesel.

In all previous attempts to formulate the containership design problem, although
the principal dimensions of the ship are treated as design variables, the carrying
capacity (in terms of the number of containers) is not modeled as a function of these
design variables, but is taken as a fixed estimate. However, the principal dimensions
of the ship strongly influence its carrying capacity. Therefore, in order to improve
the accuracy of the model, we include an explicit treatment of this issue as follows.
(a) The number of containers below deck is expressed as a function of the length,

the beam, and the depth of the ship. This has been done by discretizing the
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space available for container stowage in the lengthwise, the beamwise, and
the depthwise directions, and employing a stowage factor to calculate the
total volume available for holding containers. This stowage factor accounts
for the geometry of the hull form and the space occupied by the container cell
guides, and depends on the ratio of the displacement volume to that of the
hyperrectangle that envelopes the immersed hull form as depicted in Figure 1
(this ratio is called the block coefficient).

(b) The number of containers above deck is likewise expressed as a function of
the length and the beam of the ship, by using a suitable stowage factor to
account for the number of tiers above deck and the geometry of the available
surface area. Also, data from Panamax and post Panamax ships indicate that
the number of tiers above deck is not fixed, but is a function of the beam.
Moreover, it need not be integral because of the use of partial tiers to satisfy
visibility requirements. A regression analysis of this data was used to derive
an expression for the number of tiers as a function of the ship dimensions.

The overall derived weight expression in terms of the design decision variables
was validated against data obtained for seven ships and was observed to match
this measured data quite accurately, with an error tolerance having an average of
7.14%, and ranging from 0.4 to 15.2% (see Table 3.1 in Ganesan (2001)).

A complete mathematical form of this displacement-weight balance equality
constraint is given in Appendix B of Ganesan (2001).

3.2. LENGTH TO DEPTH RATIO

For the lightship weight formulation to be meaningful, there is a mandatory lower
bound on the length to depth ratio that must be satisfied. This is represented as
follows:

x4 − 8.3x2 � 0. (7)

3.3. RESTRICTION ON THE METACENTRIC HEIGHT TO ENFORCE THE COAST

GUARD WIND HEEL CRITERION

The center of buoyancy of a listed (or tilted) ship is not on the vertical centerline
plane. The intersection of a vertical line drawn through the center of buoyancy of a
slightly listed ship (that is tilted by an angle ϕ according to Coast Guard specific-
ations), intersects the centerline plane at a point called the transverse metacenter
(see Figure 2). The transverse metacentric height is defined as the distance from
the transverse metacenter to the center of gravity of a ship, and is given as

GM = KM − KG (8)
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Figure 2. The Metacenter and the Metacentric Height. A complete mathematical form of this
constraint is given in Appendix C of Ganesan (2001).

where KM is the height of the transverse metacenter above keel as computed by
the sum of the height of the center of buoyancy above keel (KB) plus the transverse
metacentric radius (BM), and where KG is the vertical distance between the keel
and the center of gravity of the ship (see Figure 2). For small angles of tilt (7–10◦),
the point M remains practically stationary with respect to the ship. Note that KG
is a function of the design variables as derived by the hydrostatic module of Neu
et al. (2000). Also, observe from Figure 2 that the resultant weight and buoyancy
force vectors are separated by GZ ≡ GM sin ϕ, which is called the righting arm.
If the center of gravity is below the metacenter, the vessel is stable, i.e., it retains
the ability to return to her normal upright position when heeled by the action of
waves, wind, or navigational maneuvers. In this case, the righting arm is considered
positive, and the net moment of the weight and the buoyancy about GZ tends to
rotate the ship to an upright position. To ensure a sufficient degree of stability
even under relatively large angles of tilt, the Coast Guard (see Coast Guard, 1997)
requires the metacentric height to satisfy a lower bounding inequality given by

GM � P × LA × H

Disp × tan(θ)
(9)

where, referring to Figure 1 for the ship dimensional notation, Disp = displace-
ment in cubic meters as described above; θ =angle subtended at the center of
the ship by the height above the waterline under full-load condition (i.e., by the
difference between the depth and the draft), so that tan(θ) = 2(x2 − x1)/x5;
P = 0.036+(Lbp/1309)2 metric tons/meter2, where Lbp is the length between the
vertical perpendiculars at the fore-side of the stern and the aft-side of the ship at
the rudder post (or at the sternpost or at the rudder stock, depending on the ship);
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LA = projected lateral area of the portion of the vessel and the deck cargo that
are above the waterline, so that LA ≡ x4 [(x2 − x1) + 2.4 × Ntd], where Ntd is the
number of tiers on deck and 2.4 is its height conversion factor (see Figure 1); H =
vertical distance from the center of LA to the center of the underwater lateral area
or to the mean draft point, so that H = 0.5 {(x2 − x1) + 2.4 × Ntd} + 0.5x1.

3.4. MINIMUM FREEBOARD RESTRICTION

The freeboard of a ship is defined as the distance from the waterline to the upper
surface of the deck measured at side, and is given by the difference (x2 − x1)
(see Figure 1). In order to ensure sea-worthiness, it is required that the freeboard
satisfy the following lower-bounding inequality, which together with (9), assures
an adequate righting moment and stability for the ship:

(x2 − x1) � [Freeboard_min]ρ1 + ρ2. (10)

Here, Freeboard_min is given by the following expression obtained by fitting a
curve using the method of least squares through the 114 points given in the free-
board tables in Taggart (1980), as governed by the code of federal regulations for
freeboard (46 CFR 42), and ρ1 and ρ2 are variable correction factors as described
below.

Freeboard_min = 0.025633 × x0.9146
4 . (11a)

The multiplicative correction factor ρ1 depends on the block coefficient Cb, which
is defined as the ratio of the immersed volume of the hull (Disp) and the volume
(x4x5x1) of the rectangular block defined by the length, beam, and draft of the ship
(see Figure 1). This factor corrects for the situation when Cb might be too high
(relatively close to a rectangular immersed section), and is given by the following
continuous function

ρ1 =



Cb + 0.68

1.36
if Cb > 0.68

1 otherwise.
(11b)

The additive factor ρ2 likewise corrects for a too low length-to-depth ratio (x4/x2),
and is given by the following continuous function

ρ2 =
{

0.25
(
x2 − x4

15

)
if

x4

x2
< 15

0 otherwise.
(11c)

Note that by the nature of the prescribed solution methodology, the conditional
forms of the factors ρ1 and ρ2 can be directly accommodated within the algorithmic
computations, and therefore, we do not need to mathematically model this structure
explicitly using binary variables, for example.
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3.5. ROLLING PERIOD CRITERION

Another factor that governs the sea-worthiness of the ship from the viewpoint of
the physical comfort of the occupants with respect to sea-sickness is to ensure that
the rolling-period is not too low, i.e., the ship does not rock sideways about its
keel with too great an oscillation frequency. This design constraint is represented
as rolling-period � rolling-period_min, where an expression for the rolling-period
in terms of the vertical center of gravity KG (meters) and the metacentric height
GM (meters) as defined above (see Figure 2) is given by (see Ni (1998)):

rolling-period = 0.58
√[

x2
5 + (4 × KG2)

] /∣∣GM
∣∣ seconds,

and where rolling-period_min is defined by the user (in this work it is taken as 15
s). This constraint can be restated as follows:

x2
5 + (4 × KG2) − 668.46 × ∣∣GM

∣∣ � 0. (12)

A detailed mathematical form of this restriction is given in Appendix D of Ganesan
(2001).

3.6. LOWER-UPPER BOUNDING CONSTRAINTS

The ship design variables are typically required to be bounded within some plaus-
ible, desired, user-defined limits. In the present study, these imposed bounds are as
follows:

Draft: 6 � x1 � 11 m
Depth: 12 � x2 � 25 m
Speed: 4 � x3 � 35 knots
Length: 100 � x4 � 300 m
Beam: 20 � x5 � 43 m.

(13)

3.7. OBJECTIVE FUNCTION

Containerships, being commercial transportation vessels, are typically designed for
generating maximal profits. In our design approach, we analyze the problem from
the ship owner’s perspective and assume a continuous sufficient demand in the mar-
ket for the cargo being transported. The objective function we adopt herein, based
on standard practice, seeks to minimize the required freight rate (RFR), expressed
in dollars per metric ton per nautical mile, which is simply the amount the owner
must charge the customer in order to break-even. A more precise definition from
Schneekluth (1987) is: “The required freight for a given rate of utilization produces
net revenues that exactly cover the operating costs inclusive of calculated interest
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on the invested capital”. An expression for this function is given by

RFR = AC

NC × Wcargo × Dst
(14)

where AC = annualized total cost in dollars, NT = number of round-trips made by
the ship annually, Wcargo = average weight of the cargo per trip in metric tons,
and Dst = average distance per round-trip in nautical miles.

Note that if customers pay an actual charge-rate of CR per metric ton transpor-
ted per nautical mile, the profit margin per metric ton per nautical mile is given by
(CR-RFR), which is in effect being maximized in the present context.

The annualized total cost AC includes the building material and labor costs that
are weight dependent, and are annualized using a suitable capital recovery factor,
plus annual fuel costs and annual operating costs that are comprised of wages,
stores and supplies, insurance, maintenance and repair, port expenses, and cargo
handling costs. The weight and economic module of Neu et al. (2000) was used
to derive the required expressions in terms of the dimension of the ship for this
purpose. The total time for a round-trip, which in effect determines the (variable)
parameter NT above, is comprised of the times required for loading and unloading
the cargo, the waiting time in port, and the time spent at sea. These factors all
depend on the length, the beam, the depth, and the speed of the ship. In particular,
the time for loading containers at a given port is a function of the number of cranes
available. In contrast with previous studies, the number of cranes was formulated
as a function of the length of the ship, and the resulting expression was made
continuous through a linear response surface fit. Appendix A in Ganesan (2001)
gives a complete mathematical form of this objective function.

We remark here that an alternative related measure of merit that is often ex-
amined (and sometimes even used as an objective function) is the return on invest-
ment. The return on investment (ROI), expressed in percentage per year, is defined
as the ratio

ROI = annual gross income − annualized total cost + salvage value of the ship

invested capital
× 100%.

The annual gross income is calculated by defining a suitable charge-rate (CR), ex-
pressed in dollars per metric ton shipped per nautical mile (user-defined as 0.0064).
The salvage value is taken as five percent of the depreciated value of the total
investment, which is a reasonable value, assuming that the ship is in operable
condition throughout its expected life-time. The ship life is identified by the user,
and is taken as 20 years in this work. Accordingly, we can write

ROI =
(CR × Wcargo × Dst) − AC +

[
0.05 × Owc

(1 + I r)S�

]
Owc

× 100% (15)

where Owc = cost of the ship to the owner in dollars, Ir = interest rate expressed
in percentage/100 (user-defined as 0.08), and S� = ship life in years (user-defined
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as 20), and where the remaining quantities are as defined previously. Appendix E
in Ganesan (2001) provides a complete mathematical form of this economic index.

The resulting containership design problem, CSD, can be stated in the following
generic form, similar to (1).

CSD: Minimize f (x) (16a)

subject to g1(x) = 0 (16b)

gi(x) � 0 ∀ i = 2, . . . , 4 (16c)

h(x) � 0 (16d)

x ∈�0
{
x : �0

j �xj �u0
j , ∀ j =1, . . . , n ≡ 5

}
. (16e)

Here, the objective function f (x) is the freight rate required to break-even as given
by (14), the equality constraint (16b) represents the displacement and weight bal-
ance restriction, the inequalities in (16c) are respectively given by (9), (10), and
(12), the separately highlighted inequality (16d) represents the linear constraint
(7), and (16e) delineates the initial lower and upper bounds on the design variables
as specified by (13). Note that as mentioned previously, the design variables xj ,
j = 1, . . . , 5, are assumed to be indexed in the order of diminishing priority with
respect to their relative importance in the model, as reflected by the evident sens-
itivity of the objective and constraint functions to their selected values. To obtain
these priority indices for the design variables, the effect of each design variable on
the objective and constraint functions was studied. This was done by examining the
objective and constraint functions as functions of each design variable, defined over
its bounding interval, while the other design variables were kept fixed at certain
nominal values within their respective ranges. (Other than this, any further cross-
interaction effects were ignored in this analysis for determining variable priorities.
Note that as the algorithm proceeds and more information becomes available, these
priorities could be altered at a later stage within the algorithmic process.) Linear
response surface fits were then constructed for the nonlinear objective and con-
straint functions over each separate dimension of the hyperrectangle of interest
defined in (16e). For functions exhibiting a strict local minimum in the range, the
design space was partitioned into two subregions, one on each side of the strict local
minimum, and linear response surface fits were constructed for both regions. The
slopes of the linear response surface fits were then computed. (For functions where
partitioned subregions of the design space were constructed, the average absolute
value of the slope was used.) The (absolute) resulting slopes of the objective and
constraint functions with respect to each design variable were averaged, and these
values were then ranked in decreasing order to determine the relative importance,
or the priority index, of the design variables in the model.

4. Computational Results

In this section, we present computational results pertaining to applying the pro-
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Table 1. Summary of the response surface approximations for the initial root-node

Response Design of experiment points Significant R2

function Initial full- Geometrically response terms statistic

factorial design feasible points incorporated

f (x) 1024 706 117 0.9941

g1(x) 1024 706 134 0.9984

g2(x) 1024 706 133 0.9971

g3(x) 1024 434 29 0.9998

g4(x) 625 536 150 0.9661

posed pseudo-global optimization approaches to a typical test case of a container-
ship design problem CSD using practical data as specified in Neu et al. (2000).
The following RSM stepwise strategy was employed to construct the required
polynomial approximation response surfaces.
1. Perform a screening using a full factorial experimental design (see Myers,

1995). The objective function f (x), the constraint function g1(x) that equates
the weight and the displacement, and the functions g2(x) and g4(x) that define
the inequality constraints on the metracentric height and the rolling period,
respectively, are each defined in terms of all the five decision variables. For
these functions, we employed a full factorial design having four levels, leading
to 45 = 1024 points. On the other hand, the function g3(x) that defines the
inequality constraint on the freeboard is described in terms of four decision
variables. For this function, we employed a full factorial design having five
levels, leading to 54 = 625 points. (The resulting fifth-order polynomial ap-
proximations for these functions contain at most 252 terms and 126 terms, re-
spectively, several of which turned out to have zero (statistically insignificant)
coefficients.)

2. Apply the geometric constraint on the length to depth ratio as described in (7)
to eliminate the experimental points that correspond to infeasible designs.

3. Perform a regression analysis to obtain the coefficients of the fitted polynomial
response functions of order d =5. (We used a forward stepwise regression pro-
cess using the JMP software obtained from SAS Institute Inc. (2001), with
threshold values of 0.25 and 0.10 for terms to enter and leave the model,
respectively, as determined by statistical tests.)

This process was verified to yield very accurate representations. For example,
for the initial root-node, where the bounding hyperrectangle is given by (13), a
summary of the response surface approximations is provided in Table 1.

Figure 3 presents the results obtained for Algorithm PGO1 using the two al-
ternative branching rules BR1 and BR2, and Figure 4 presents analogous results
for Algorithm PGO2. In these figures, the value of the incumbent solution z∗ is
indicated only at those nodes where this value was updated. Note that Algorithm
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Figure 3. Results for algorithm PGO1.

Figure 4. Results for algorithm PGO2.

PGO1 produced the same solution using either branching strategy BR1 or BR2,
as did Algorithm PGO2. The two solutions produced by these algorithms differ
only slightly but have the same objective value (to six decimal places). Table 2
displays the principal ship design parameters corresponding to these two solutions.
The analysis of each node for PGO1 consumed about 2183 and 42 cpu seconds
for the lower and upper bound computations, respectively, while these run-times
for PGO2 were about 40 and 48 cpu seconds, respectively, on a SUN Ultra 1
workstation operating Solaris 2.5.1. Note that the total time for PGO2 was only
about 4% of that consumed by PGO1 because of the simpler linear programming
lower bounding scheme, along with the fact that it required the enumeration of the
same number of nodes in this case.
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Table 2. Design parameters obtained from algorithms PGO1 and PGO2

Containership design parameter Algorithm Algorithm Neu et al. (2000)

PGO1 PGO2

Carrying capacity (TEUs) 5,716 5,713 3,591

Number of roundtrips made

annually 17.06 17.21 16.58

Annual transportation capacity

(TEUs) 97,515 98,321 59,539

Annual dead weight transported

(metric tons) 1,170,179 1,179,849 714,465

Annual gross weight transported

(metric tons) 1,593,249 1,593,474 976,494

Cost to owner $54,334,781 $54,403,474 $39,968,976

Annual profits for full-load

shipments $44,019,813 $44,383,551 $25,756,476

Return on investment 80.83% 83.55% 64.58%

The design determined by Algorithm PGO2 has a slightly greater depth and the
service speed is somewhat greater. Although the increase in depth is not significant
enough to cause an increase in the carrying capacity, the faster speed does enable it
to log additional nautical miles annually, and this is also reflected in the improved
return on investment as shown in Table 2. For both these solutions, the only active
constraint is the mandatory equality restriction that balances the displacement and
the weight. A sensitivity analysis performed in the local neighborhood of these
solutions reveals that the objective function is relatively flat, indicating that the
user has some nominal freedom in modifying the design parameters.

For the purpose of comparison, we also applied the design optimization tool
developed by Neu et al. (2000) to solve this instance of Problem CSD. This tool em-
ploys three nonlinear search methods: the Modified Method of Feasible Directions
(MMFD), Sequential Linear Programming (SLP), and Sequential Quadratic Pro-
gramming (SQP) (see Bazaraa et al., 1993, for a description of these algorithms).
The methodology used by Neu et al. first applies each of these methods to three
starting solutions as determined by the lower bounds, the upper bounds, and the
interval midpoints of the hyperrectangle �0. Subsequently, using the best solution
thus obtained for each method as a new starting solution, the procedure re-runs
each of the three methods with certain prescribed tolerance and parameter settings.
The best overall solution found by these multiple (twelve) runs for our model
data is given by x∗ =(10.00, 17.00, 16.70, 211.19, 40.90) and has an objective
value of z∗ =0.001250, with some additional design and performance measures
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being specified in Table 2. Note that the Algorithms PGO1 and PGO2 result in
a 17.92% improvement in the objective function value. Recall that the objective
function used is the required freight rate to break-even expressed in dollars per
metric ton per nautical mile. Hence, this results in an estimated increase in profits
of about $18.45 million over the life of the ship. Moreover, at an average, the return
on investment over the life of the ship for the designs produced by the proposed
algorithms improves on that realized by the Neu et al.’s design by a factor of about
27%.

5. Summary, Conclusions, and Extensions

In this paper, we have presented a class of pseudo-global optimization approaches
for solving challenging optimization problems that are defined in terms of com-
plex functions that are expensive to evaluate, or in terms of black-box functions.
Such problems arise frequently in engineering design and process control con-
texts. We have described a methodology based on using RSM or interpolation
techniques to construct polynomial programming approximations, and then using
these in concert with global optimization methods such as the Reformulation-
Linearization Technique (RLT) along with suitable partitioning schemes within a
branch-and-bound framework. To illustrate this methodology, we have applied it
to a detailed improved model developed for the design of containerships. A com-
parison of the design obtained by using the proposed approach with that resulting
from the application of the incumbent nonlinear design optimization tool of Neu et
al. (2000) revealed a significant improvement in the design parameters, translating
to an estimated increase in profits of about $18.45 million, and an estimated 27%
increase in the return on investment, over the life of the ship. For future research,
we recommend a more detailed study of the convergence characteristics of the
proposed class of pseudo-global optimization methods, and an automation of its
application to various design problems. Note that in our computational runs, be-
cause of the prototypical nature of our procedure that employs disparate tools for
constructing response surface approximations, solving polynomial programming
approximations, and performing local searches, each node analysis required an
intense manual interaction for implementing the prescribed steps. It is worthwhile
to point out here that available statistical software do not always allow the user to
construct response surface models of orders greater than quadratic, and the ones
that do allow this, require the additional polynomial terms to be added manually.
Hence, the automation required is a nontrivial task, but one that is necessary to test
the proposed methodology using additional case studies, as well as to facilitate the
transfer of this technology to practice.

In conclusion, we mention that the developed approach can also be extended
to the design of other vehicles and structures. One such possible application is
the design of surface warships. This problem is somewhat more intricate because it
additionally requires the consideration of issues such as susceptibility (the ability to
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avoid detection), and vulnerability (the ability to withstand damage in action). De-
pending on the type of warship (aircraft carrier, frigate, destroyer, or minesweeper),
the design variables would relate to the principal dimensions and the coefficients
of form similar to the containership design problem described in this work, but
would also include other design considerations such as the design speed in calm
water, cruise speed at which the specified level of endurance is to be attained in
calm water, and navigable distance at the cruise speed with all available fuel used.
Constraints would need to be imposed on the maximum permissible operational
load, the minimum number of watertight bulkheads, and the minimum number of
decks below the upper deck, in addition to the constraints pertaining to the stabil-
ity, the rolling period, and the minimum required freeboard. A possible objective
function could be to maximize the transport effectiveness that is a combination of
the specific power and the ratio of the operational load to the total weight of the
ship. Brown and Tupper (1989), Hovgaard (1920), Rawson and Tupper (1984), and
Taggart (1980) provide further guidelines and more detailed discussion on these
design issues.
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